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Abstract

This paper examines "evolutionary" dynamic behavior in the finitely repeated prisoner's

dilemma. It is first noted that the "fitness" of cooperation found in the best known simulation

of this type, that by Robert Axelrod, stems from strategy set restrictions that altered Nash

equilibrium behavior: Axelrod's restricted game has a continuum of pure cooperation equilibria

and no pure defection equilibrium. New simulations, maintaining the finite game's equilibrium

structure, are presented here. It is found that although cooperation is ultimately exploited and

extinguished, dynamic paths can "pseudo converge" in ways that allow partial cooperation to
/

flourish for extended periods of time. A.
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1. Introduction

This paper examines "evolutionary" dynamic behavior in the finitely repeated prisoner's

dilemma. Under the dynamics considered, if there is convergence to a limit (in general there

need not be), then that limit must correspond to a Nash equilibrium of the game formed from

the strategies in the initial distribution. This will be verified in the text. For the finitely

repeated prisoner's dilemma, the implication is that if all strategies are present in the initial

distribution then ultimately only defection can "evolve".

This observation appears to be contradicted by a well-known dynamic simulation of

Robert Axelrod in which the dynamic path seems headed for a purely cooperative limit. As

will be discussed, the discrepancy is resolved by noting that the strategies employed in that

simulation yield a restricted game with, on the one hand, no purely defecting equilibria at all,

and on the other, a continuum of cooperative equilibria. The fundamentally cooperative nature

of Axelrod's game appears in turn to stem from his having used the strategies submitted for the

second of his computer tournaments, which was constructed to be viewed by the participants

as an indefinitely repeated game.

This paper takes up the question of what happens in the simulation of a "true" finitely

repeated prisoner's dilemma with known endopoint. Of course, ultimately we expect

cooperation to be extinguished, but this leaves unanwered how the dynamics behave short of

the limit. For practicality, this paper, like Axelrod's, must typically consider restricted strategy

sets. However, care is taken here that the corresponding restricted games share the finitely

repeated prisoner's dilemma's main qualitative features. In particular, in the games considered

here, mutual defection is the only Nash equilibrium play and "defect always" is the unique

dominance solution. It will then be demonstrated by example that dynamic paths can "pseudo

converge" to distributions in which partial cooperation can prosper for extended periods of

time. It will be noted also that this same behavior can create computation problems making it

imprudent in general to try to infer limiting behavior from a necessarily finite run. Finally, it

will be pointed out that, in the 2-stage game at least, path limits all correspond to imperfect



equilibria: the weakly dominanted strategy "Defect Tit-for-Tat" (defect in the first stage; in

stage 2 play whatever one's opponent played in stage 1) is never driven to extinction.

The organization of the remainder of this paper is as follows. The next section reviews

briefly the prisoner's dilemma. Section 3 introduces, and to a degree motivates, the dynamics.

Section 4 discusses some fundamental properties. Section 5 reexamines the simulation run by

Axelrod. Sections 6 and 7 discuss the new simulations run for this paper.

2. The Prisoner's Dilemma

The reader will recall that the payoff matrix for the 1-stage prisoners' dilemma is given

by:

Player 2

C D

Player 1C bJ
D [ _ 5- di__

where c > a > d > b and 2a > b+c. C is to be read "cooperate" and D "defect". The 1-stage

game has a unique Nash equilibrium in dominant strategies, namely (DD), an outcome which

is Pareto inferior.

As the stage game is repeated, the number of possible strategies grows explosively.

For s stages there are

22'-1

distinct strategies, which exceeds 10l10 for s > 9.1 The diversity of possible strategies suggests

that it might be possible to enforce mutual cooperation in equilibrium by a threat to punish

(by, say, a permanent reversion to "defect always", written DD) upon seeing a play of D. This

approach can indeed elicit mutual cooperation in the infinitely or indefinitely repeated
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prisoner's dilemma (an instance of the "Folk Theorem") and also yields a Folk Theorem-like

proliferation of (perfect) equilibria in many finitely repeated games (see Krishna 1988 for a

survey of the Folk Theorems). However, as is well known (e.g. Luce and Raiffa 1957) the

approach fails utterly with the finitely repeated prisoner's dilemma, at least when the terminal

stage is common knowledge. While the diversity of strategies does generate a continuum of

Nash equilibria (provided s > 2), qualitatively they are all alike: within equilibrium the only

play is mutual defection at all stages. Moreover, although DD is no longer a dominant

strategy for s ! 2, iterated deletion of (weakly) dominated strategies yields DD as the unique

dominance solution. 2  The absence of cooperation in equilibria of the finitely repeated

prisoner's dilemma is a consequence of the fact that the punishment strategy and the dominant

1-stage strategy are one and the same, causing cooperation to "unravel" from the back: in

equilibrium, players will always mutually defect in the last period; thus, since either will be

"punished" in equilibrium in the last period, neither has reason not to defect in the second to

last, and so on.

Classical game theory's sharp prediction of mutual defection in the finitely repeated

prisoner's dilemma is at variance with the evidence: the "stylized fact" from experiments is

that play is typically cooperative until towards the end. See Selten and Stoecker (1986) and

also Roth (1988). The question raised by Axelrod's simulation and addressed here is: to what

extent can the dynamical system used by Axelrod make non-Nash equilibrium behavior

"1plausible"?

3. The Dynamics

We imagine that there is an infinite population of players and that in each time period

players are paired randomly. After pairs have played their repeated games, each player is

informed about his payoff in his pairing, is given some information (possibly incomplete)

about the payoffs of other players and using this information he revises his strategy choice.
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It is conjectured that the strategy revisions aggregate into a function G on the space of
n n+i

strategy distributions, namely the simplex A = (P E R, = 1), where n+1 is the number

of strategies. 3  Pi is simply the population fraction playing i, and if P1 is the round t

distribution, P1+ = G(P t) is the distribution at date t+l. Loosely, the hypothesis will be that

the fraction of participants submitting strategy i will go up if i does well relative to the

average, and down if it does poorly. To be more explicit, it is helpful to introduce some

notation.

Let A be the matrix of payoffs to player 1. Thus, for the 1-stage game, A is given by

a b
A=

c d

For an s-stage game A would, of course, be much larger. We will typically be considering a

subhet of the full strategy set, one with, say, only n+l pure strategies. If the current strategy

distribution is P, the expected payoff to an i player is (AP)o the i entry in AP. The average

payoff in the population as a whole is P. AP. If the round t distribution is Pt, the dynamics

proposed is:

t-1 t t tPi = G,(Pi) = Pi(AP-

which can be rewritten:

1-1 t
P - P = Pi [(AP i-P t-APT.

Pt. Ap t

t+i t t

In words, under the dynamics the growth rate, (Pi - P ) / P i, is equal to the difference between

the expected payoff to strategy i, given the current population, and the average expectation for

the population as a whole (ignoring the renormalization term 1/P AP). I will assume that A
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is normalized so that A _> 0 with a strictly positive diagonal. This will assure, among other

things, that the Pi remain non-negative.

The customary home of these dynamics is within mathematical biology, where they are

known as the replicator dynamics and serve as a model of natural selection based on asexual

reproductive success. Areas of application are varied, including biological evolutionary game

theory, mathematical ecology (the replicator dynamics are formally equivalent to the

Lotka-Volterra dynamics), and population genetics. Schuster and Sigmund (1983) provide an

overview of the role played by replicator-type systems in mathematical biology. The book by

Hofbauer and Sigmund (1988) provides a comprehensive technical survey.

The success of the replicator dynamics in biology does not argue its suitability for

modeling learning/imitation environments. The position taken here is that the dynamics offer

a relatively tractable "first approximation" to modeling those imitation environments in which

the probability of a player switching to a new pure strategy, say i, depends not only on the

performance of i (here measured by (AP) i - P.AP), but also on the probability of i's

performance being observed (as measured by Pj). Nachbar (1989) provides somewhat more

detail on this type of motivation. Stress should be placed on the reference to "first

approximation". No claim is made in Nachbar, for example, that the replicator dynamics can

be exactly motivated in this way. The reader should also refer to Crawford (1988), who argues

that if individuals play mixed strategies and adjust their strategies according to the replicator

equation, then the replicator dynamics cannot simultaneously serve as a description of

dynamics in the population as a whole. There is an aggregation problem.

4. Fundamental Properties of G

Denote by suppP the set (i I P i > 0) (i.e., the set of strategies to which P give.; positive

weight).
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PROPOSITION I From an initial point P0 , if limP t = P* then (P*,P*) is a Nash equilibrium of

the game with (pure) strategy set equal to suppP ° .

The proof is supplied in the Appendix, where it is derived from four simple properties of G.

The basic argument is that if i is an inferior strategy in the limit, meaning that for some j,

(AP*)j > (AP*)i, then i must be inferior to j near the limit. It follows that Pi tends to zero,

hence suppP* contains no inferior strategies.

Two aspects of the proposition deserve special comment. First, the proposition does

not say that (P*,P*) needs to be a Nash equilibrium for the game with all strategies present.

This is a consequence of the fact that the replicator dynamics never introduces strategies not

already in suppP°.4 The second point is that we cannot conclude that Pi tends to zero if we

merely have that i is inferior to j near the limit but (AP*)i = (AP*)j. This observation

underlies the result on imperfect limits discussed in section 7.

Proposition 1 is a known "folk theorem" in evolutionary biology. It has also been

noted independently by some economists (e.g. Samuelson 1988, and Hansen and Samuelson
1988). The result readily generalizes to ~ dynamical system that obeys the four properties

used in the argument, whether the system is discrete or continuous, whether the game is

2-player symmetric (as here) or n-player asymmetric. A related but distinct result is worth

mentioning but will not be proved here:

Proposition 2 If P* is a stable fixed point then it is a Nash equilibrium.

Recall that P* is said to be stable if any dynamical path that starts near P* remains near P*

(the path need not actually converge to P*). Again, this is a known result. A proof is

provided in Nachbar (1989), among other places. Again, the result is very general.

The reader should note that the propositions provide no guarantee that in fact any

dynamic path PI converges. For arbitrary games, convergence need not occur. Nachbar
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(1989) discusses conditions known to imply convergence. Briefly, while convergence can

easily be established for strict dominance-solvable games, weak dominance-solvable games,

including the finitely repeated prisoner's dilemma, pose subtleties. It can be proved that any

path in the 2-stage prisoner's dilemma converges. The analogous result for the k-stage game

remains an open question.

5. Axelrod's Simulation

Axelrod's simulation is presented in his 1984 book, "The Evolution of Cooperation".5

The stated intention was to mimic his procedure of soliciting strategies, running a round-robin

tournament, announcing the results, and then repeating the process. For his matrix A, Axelrod

chose the payoff matrix generated in the second (and last) of the two actual tournaments.

Despite this intimate link between simulation and tournament, the game of the simulation is

fundamentally different from that of the second tournament. As this point has caused some

confusion, I will be more explict.

From the perspective of tournament participants, the tournament game was indefinitely

repeated: players knew that the actual length would be finite but they did not know the

terminal stage. 6 Rather, the game length was drawn from a distribution characterized by a

known probability o that at any stage the game would continue for at least one more stage.

As co was set high (o) = .99654), cooperation can be supported in Nash equilibrium in this

game. This may in turn explain the highly cooperative nature of the submitted strategies.

In contrast, from the perspective of the dynamics the simulation was of a finite game

with known endpoint, since the cells of A were computed for such a game. 7 If simulation of

an infinitely or indefinitely iepeated game had been intended, Axelrod would have needed

either a different choice of A (with cells calculated as the o-weighted sum of an infinite

payoff stream) or a change in the dynamics to allow A to be stochastic.
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Turning to the simulation, Axelrod took an initial distribution 1P) that gave equal

weight to every strategy used and computed 1000 generations. The well-known finding was

that the strategy "Cooperate Tit-for-Tat" (CT'F: cooperate in stage 1 and thereafter play

whatever one's opponent played in the previous round) was ranked strictly first from round 2

onwards, although only by a small margin (it is one of six strategies with shares between .1

and .15 at round 1000). The plot of frequency against generation demonstrates considerable

monotonicity, with the ordinal position of the top 6 strategies not changing at all after the first

few rounds.

According to Proposition 1, if the dynamic path converges to a limit and the round

1000 distribution is close to that limit, then the round 1000 distribution must be close to a

Nash equilibrium. There is indeed a Nash equilibrium nearby. In fact, there is a continuum of

them, supported by the 39 of the 63 submitted strategies that have the property that each is

never first to defect (is "nice" in Axelrod's terminology). 8 The point in this equilibrium set

that is closest to the round 1000 distribution lies .01 (in the Euclidean metric) away, in the

set's strict interior.9 Since the strategies are nice, play in every equilibrium from the set is

mutual cooperation at all stages. The situation for defecting equilibria is diametric: Axelrod's

game admits no purely defecting Nash equilibria whatsoever. 10

It thus appears that the fitness of cooperation found in Axelrod's simulation derives

predictably from the Nash equilibrium properties of his restricted game. These properties, in

turn, are quite different from those that obtain in either the "complete" finitely repeated

prisoner's dilemma (where defection is the only equilibrium outcome) or the "complete"

infinitely or indefinitely repeated prisoner's dilemma (where pure cooperation is one of only

many possible behaviors). However, there may nevertheless be substance in Axelrods' basic

intuition that cooperation is dynamically fit, in some sense, even in hostile environments, an

extreme being the "true" finitely repeated game with known endpoint. The remainder of this

paper focuses on behavior short of the limit in the finite game. An alternative would be to

investigate the replicator dynamics in infinitely repeated games with richer equilibrium
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possibilities. This approach is taken in Hirshleifer and Martinez Coil (1988) and in Blad

(1986), both of which consider a variety of 3-strategy games related to the infinitely repeated
11

game.

6. Simulations of "Large" Finitely Repeated Prisoner's Dilemmas

The following two sections will provide evidence on dynamic behavior in prisoner's

dilemmas with two or more stages (the reader can easily verify that behavior in the I-stage

game is trivial). The present section will focus on a 6-stage example which is a good

qualitative representation of my experience with "large" prisoner's dilemmas. I will discuss at

some lcngth the degree to which the results found are robust. The next section will then turn

to simulations of 2-stage games, which are of special interest because those games are small

enough to run simulations with all strategies present.

For repeated games with even just a few stages, tractability requires restrictions on the

number of strategies investigated. To retain the spirit of the finitely repeated prisoner's

dilemma in the restricted game, the simulations I have conducted have included for any given

strategy x, additional strategies of the form "play x until the last period, then defect for

certain", "play x until the last two periods, then defect for certain", and so on. In such games,

as in the full finitely repeated prisoner's dilemma, defection is the only play in Nash

equilibrium and defect always (DD) is the unique dominance solution.

Consider then a 6-stage repeated prisoner's dilemma with 1-stage payoff matrix:

4 0
A=

6 1

9



and strategies:

1) CT7 (Cooperate Tit-for-Tat: C in stage 1; in stage t+1 play whatever one's

opponent played in t)

2) CTT until stage 6 then D

3) CTT until stage 5 then D in the last 2 stages

4) CTT until stage 4 then D in the last 3 stages

5) CTT until stage 3 then D in the last 4 stages

6) C then D in the last 5 stages

7) DD

For an initial P0 in the center of the simplex, the path diagram is given in figure 1. A

partially cooperative strategy such as 4 is seen to prosper for a time, but eventually it is

exploited and overtaken by the strategy that defects one period earlier. Ultimate convergence

to P7 
= 1 can easily be shown based on the crude condition that if ever P7 > 15/16 then from

then on P7 increases monotonically and all the other population fractions fall monotonically. It

is evident that termination of the simulation at a round short of 700 could yield an erroneous

prediction about the path limit even though it might appear to the researcher that the path had

nearly converged. The path displays, in particular, "pseudo convergence" to P6 = 1: there is a

span of nearly 300 periods in which strategy 6 gets weight of .99 or higher.

The mathematical intuition for why this behavior arises is straightforward. The weight

on strategy 6 persists at high levels because the weight on strategy 7 (DD), the strategy that

exploits 6, falls to roughly 10-30 by round 288. Since strategy 7 does only slightly better in a

population of 6s than does 6 itself, it takes roughly 300 rounds for the population weight on 7

to recover. In turn, the magnitude of the fall in P stems from the fact that DD is a poor7

response, indeed the worst (available) response, to any population distribution where mass is

concentrated on strategies other than 6 or 7. Consequently, if Pt is a distribution where

10
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strategies I through 5 predominate, then the ratio:

r (P)- (AP t) 7
7 p t .At

t+l

is less than one. But P = P r (Pt), so if for all v in some time interval {0,...,V} we have
7 77

1.-v tv v t

r (P ) < K < 1, for some positive K, then P is less than K P , which can rapidly become
7 7 7

very small. As it happens, r (Pt falls to a low of roughly .59 at round 24, climbs only to .737

by round 100, and was still only .92 at round 200.

Is figure 1 robust? This question will occupy the remainder of the present section. The

short answer is "definitely yes" with respect to changes in basic data such as the initial

distribution, "more or less yes" with respect to certain changes in the dynamics and the

associated learning story.

Taking the latter point first, the current story states that during the 300 rounds in which

strategy 6 predominates, the superior performance of strategy DD remains unknown to the vast

majority of players for the simple reason that DD players are rare and hence infrequently

observed. One might conjecture, as an alternative, that at least some players, having met

strategy 6 players exclusively for tens if not hundreds of consecutive rounds, would analyze

the normal form directly and switch to DD without benefit of example.

Suppose we change the dynamics by assuming that, while the behavior of most of the

population remains described by G, a fraction E of the population is composed of

well-informed and computationally proficient "analyzers" who play in period t+1 the best pure

strategy response to P1 (i.e. these players act according to the Cournot taitonnement, on which

see Moulin (1986)). The effect of the analyzers is to ensure that the population weight on the

best current strategy is never less than E. The consequence of this change is what one expects:
-30

for e > 10 , intervals in which strategies 5 or 6 are close to 1 are shorter (if they exist at all)

-6
and approximate convergence to P 7 = 1 occurs earlier. For example, setting £ at 10 reduces

11



the interval during which P 6 > .99 from nearly 300 rounds to only 4; consequently, the first

round in which P7 > .99 drops by more than half (310 versus 667).

The reader should note that, strictly speaking, the path in figure 1 is nevertheless robust

to the analyzer perturbation: although the path is sensitive to small E, the impact of the

perturbation all but disappears if E falls below 10-30 (admittedly a very small number).
-.6

Moreover, the degree of sensitivity to small e should not be overstressed. With E = 10 as

above, the path resembles a "compressed" version of that of figure 1 in particular, it remains

true that there is an interval in which strategy 4 prospers, followed by a regime of 5, then one

of 6, and finally convergence to 7. Thus something rather like figure 1 can still be obtained

even with the addition of a "modest" number of analyzers.

As noted, with respect to changes in the basic data one can assert the robustness of

figure 1 with considerably more vigor. In the case of the initial distribution, not only is the

figure essentially unaltered by sufficiently small changes but we can even say that the behavior

shown is, in a precise sense, probable. Specifically, if we take every starting point in the

interior of the simplex as being equally likely then the probability is roughly 2/3 that 1) P5 will

exceed .99 at some point in the path and 2) following that, there will be a stretch of at least

200 rounds in which P6 > .99. Conversely, the probability that P 7 will be less than, say, 10-6

after 300 rounds is roughly 75%, rising to 90% if we stop the simulation at round 100. (These

probabilities are Monte Carlo estimates, for a sample size of 1000.)

The behavior expressed in figure 1 appears also to be robust to small changes in the

payoff matrix, to the introduction of more complex strategy sets (although given the huge

number of strategies this is a conjecture rather than an assertion), and to increases in the

number of stages. 12 On the last, an increase in the number of stages yields a path that is

analogous to figure 1 but more extreme. In particular, the fall in the population share playing

DD can become so severe that problems arise with computer underflow, wherein one's

software arbitrarily sets any number below some cutoff, roughly 10- 300 in the case of the

package I used, equal to zero. In effect, the software decides that any population that small

12



becomes extinct, rendering further computation meaningless from the standpoint of a strict

interpretation of the dynamical system.

Superficially, underfiow may appear to be a non-problem since one might argue that

the imposition of an "extinction threshold" is "realistic". However, to the degree that

extinction makes a qualitative difference (i.e. substantially alters dynamic behavior), it works

its effect by exploiting one of the replicator dynamics least appealing features, namely the "no

creation" property that once a strategy i is extinguished it disappears forever. In the

interpretation maintained here, "no creation" stems from an implicit assumption that no one in

the population has the informational or computational resources to reinvent extinct strategies.

As an example, suppose that in the game of this section we set an extinction threshold of

between 10-1° and 10-30. Then for an inital PO in the center of the simplex we get a limit of

P* = 1, we get cooperation for one period. This is simply a consequence of the fact that
6

strategy 7 dies off before it gets a chance to exploit 6. Not surprisingly, this kind of behavior

does not persist under the introduction of an e subpopulation of "analyzers" (naturally c would

have to be set above the threshold level to have an effect). An alternative would be to allow

for the periodic introduction of small "mutant" populations. As should be intuitive, periodic

mutution will restore dynamic behavior to something more or less like that displayed in figure

1, with eventual convergence to P* = 1.13
7

7. Simulations of the 2-Stage Prisoner's Dilemma

Figure l's most striking feature, the "pseudo convergence" to a non-Nash equilibrium,

can be obtained when there are only 2 stages. However, 2-stage examples seem to require

starting points that are extreme (e.g., that place most weight on C'). Rather than dwell on

this point, it is more fruitful to observe that even with a 2-stage game it is easy to find

circumstances in which dynamic paths remain far from their limits for extended periods of

13



time. For a dramatic example, consider the game with stage payoffs:

99 0
A=

100 .5

These payoffs were chosen to keep the relative reward for defecting low, so that to a limited

degree the 2-stage payoffs resemble those generated by a longer game. The two-stage game

has 8 distinct pure strategies:

1) C always

2) CTr

3) C in the first stage then "reverse tit-for-tat": D if

one's opponent played C and vice versa

4) C and then D

5) D and then C

6) D and then tit-for-tat (DTT)

7) D and then reverse tit-for-tat

8) DD.

The path for a PO that gives equal weight to each strategy is depicted in figure 2. Ultimately,

the path converges (Proposition 2 in Nachbar 1989), and it is to the mixed strategy Nash

equilibrium given, approximately, by P* = .0029 and P* = .9971. Nearby starting points give
6 8

similar, though not identical, path patterns, as do nearby stage payoff matrices. In particular,

the "braiding" seems to be robust. Perhaps of greater interest, the probability is high that

14
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strategy 4 will maintain a large population share late into the simulation. For example, a

Monte Carlo simulation gives a probability of roughly 80% that P4 > 1/3 at round 800.

The limit of the path in this example is not subgame perfect: DTT allows the

possibility of cooperation at stage 2 whereas the dominant strategy at that stage is to defect.

One might conjecture, based on the 6-stage, 7 strategy example above, that as a general

principle the evolutionary dynamic would drive weakly dominated strategies (such as DTT) to

zero. However, this logic is invalid in the presence of payoff matrix ties. In matrices derived

from extensive form games, of which the finitely repeated prisoner's dilemma is an example,

such ties can be endemic. Here, they lead not only to imperfect limits but to the following:

FACT For any I-stage payoff matrix which is admissible (i.e. is non-negative), P8 = 1 is not

the limit of any path from the interior of the simplex.

Because every dynamic path from the interior of the simplex converges (Nachbar 1989), the

fact implies that for these particular dynamics DTT is "evolutionarily fit" in a strong sense: it

is never driven (completely) to extinction from any starting point. A proof is provided in the

Appendix. The basic reasoning behind the result is that although DD weakly dominates

strategy DTT, it does so only if other strategies get positive weight, and under the dynamics

used here those strategies are going to zero geometrically.

8. Conclusion

Ultimately, the merit of any "evolutionary" argument for games played by humans

depends on whether the evolutionary story can be given a credible foundation. The present

paper has largely finessed this issue, focusing instead on the consequences of such an

approach. It has been shown that, in terms of limit properties, the replicator dynamics offer no
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relief if Nash equilibrium behavior is deemed undesirable. The dynamics offer more hope

short of the limit: convergence to approximate Nash equilibrium behavior can be slow and

there may be pseudo convergence to a distribution which is not a Nash equilibrium. A caution

should be mentioned here. The system given by G is invertible, 14 hence every point in the

interior of the strategy simplex is a possible population distribution at round, say, 1,000.

Consequently, to be meaningful, statements about distribution after a finite number of rounds

must be phrased in terms of the probability of hitting a particular region (unless, of course, one

can be very confident about the choice of P0).

Arguments based on evolutionary limits become attractive when the task is not to

explain non-Nash equilibrium behavior but rather to discriminate among a profusion of Nash

equilibria. One can argue for the "plausibility" of one equilibrium over another based on

stability, size of basin of attraction (union of all paths converging to the given limit) and so on.

This is the spirit of the analytical section of Axelrod's book, which deals exclusively with

selecting among the plethora of equilibria available in the infinitely repeated prisoner's

dilemma. This approach is taken also in Hirshleifer and Martinez Coil (1988), and in Blad

(1986), already mentioned in the text. Finally, the reader is directed to the papers by Friedman

(1988), by Samuelson (1988), and by the present author, which analyze broad classes of

evolutionary dynamical systems, of which the replicator dynamics investigated here is but one

representative.
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APPENDIX

PROOF OF PROPOSITION The proof is easy after one has noted that, with the restrictions

imposed on A (namely that it be non-negative with a strictly positive diagonal), we have the

following properties.
n

1) G is continuous oH A

2) G is "responsive": G(P) = P iff (AP).= (AP) for all ij E suppP. Thus, the fixed
I j

points of G have the property that they are Nash equilibria with respect to themselves, but not
n

necessarily with respect to the full strategy set. For example, any vertex of A is, trivially, a

fixed point of the replicator dynamics, whether or not it corresponds to a Nash equilibrium.
t+l

3) The system is forward invariant: Pi = GIP t) > 0 iff P > 0. In words, strategies

are neither created nor, except "in the limit", destroyed.

4) The system obeys a boundary rule: If P0 > 0, P0 > 0 and for some T, (APr) >i j

(APt) for t > T, then limP t = 0 implies limP t = 0. In words, if Pt gets driven to zero then so
J i j 

do all inferior strategies. The boundary property is proved below as a separate, and easy,

Lemma.

These properties noted, suppose P* is not a Nash equilibrium with respect to suppP.

Then there are pure strategies ij such that (AP*) > (AP*) , with i e suppP0 and j E suppP*.

Then by continuity, (AP t) > (APr) for t > T, some T sufficiently large (and by invariance P >
i j i

0 and Pt > 0). Hence by the boundary rule, P* > 0 implies that P* > 0. But then since G is
J i i

responsive G(P*) # P*, hence P* is not a fixed point and so, since G is continuous, it is not a

limit point. The proof follows by contraposition.1l

LEMMA The replicator dynamic obeys the boundary property.

Proof The rnplicator dynamic obeys:
t+lI t t+lI

Pi - Pi> Pi - P iff (AP).> (AP)
Pt pt 

i J
(as always, assuming Pt > 0, Pt > 0). Thus, the growth rate of strategy i exceeds that of j

i J
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iff i has a higher payoff than j. Under the conditions of the boundary property, and thanks

also to invariance, we then have that the ratio PtP is well-defined and strictly increasing for

t > T. The result follows.I

PROOF OF FACT Let P* be given by P8 = 1. It is easy to verify that the Nash equilibria of

the game occupy a closed, nontrivial segment of the edge between 6 and 8, with P* occupying

one endpoint. To show that P* cannot be an ecological solution, consider the ratio Ps/P6. pt

- P* implies that this ratio tends to o. The proof will proceed by showing that if Pt - p,

then this ratio remains bounded, a contradiction.

To show that P8/P6 is bounded, we majorize this sequence by another sequence that we

know to be bounded. Note first that for every strategy i except 6 and 8, there is a number 0 i E

(0,1) such that (AP D /(P. AP Di < 03, provided t exceeds some large number, say 't i (this follows

since by assumption Pt _ p* and since a8 j > a8 8 for all j other than 6 and 8; aij being the

generic entry in A). We take a common 0 < 1 and a common threshold 't that serves for all

such i. Next, denote by et> 0 the total weight at t on all strategies other than 6 and 8. It is

convenient to denote El simply by E. Then e-+ t+1 < Prr'+t < P t+lF. Finally, let B be the highest

possible (expected) payoff to 8 conditional on 8 playing against one of the six strategies other

than 6 or 8. Similarly, let C be the lowest possible (expected) payoff to 6 conditional on 6

playing one of the other six strategies. The precise values of B and C do not matter, only that

they are independent of t and that B > C > 0. With this noted:

T+ t1+ 1+t
P8 < (F(1-f3s) + Bos). P8

P6-' (F(l-jVc) + CjpsE) ,T+tP6 P

where F (for "Fink"; > 0) is the payoff to 6 or 8 from mutual defection. Proceeding in this

18



way we have:

T+ t+1 t +1
P 8  t (F (l _ PSc ) + B s ) .P 8
T -I (F(1-13tE) + Cs )I V

P6 sP

We need to show that the term in brackets is bounded. (This will show that in fact the term

converges, since the bracketed term is non-decreasing, given that B > C.) Intuitively, it is

clear that the term should converge, since as s goes to - the ratio goes "geometrically" to F/F =

1. Rigorously, we show that the product is majorized by another product which converges.

We need to establish some additional inequalities. Note first that we can assume without loss

ot generality that F = 1. Let then:

V(s) = I-PsE + B
1-13E + c13

Thus, in our new notation we are interested in lim [I V(s). Let 8 = B - C > 0. Then adding

and subtracting C3sE in the numerator we have:

-1+ 8PsE
I +CP SE-3 iE

Since C > 0 and since 3s < P, we have:

<1+ 8P sr <I+ 8se

I -13 I - PE

= 1 + 6"PS3

where 8* -/(a-1k) > 0, a constant.
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Now nI V(s) tends to if and only if its log does. Thus we are interested in

log HV(S) = Xlog(V(s))

But log(1+8*53E) < 8*p3se. Hence:

log R V(S) < YX8*Pts

=6*E IJ3s

The last is a geometric series, and thus converges.*
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Notes

1) This calculation counts as a single strategy any two strategies whose behaviors diverge

only after a deviation, not by one's opponent but by oneself. Any two such strategies yield

identical rows and columns in the normal form.

2) See Moulin (1986) for discussion of dominance solvability.

3) Implicit is a "Markov" property: only the current population distribution affects the choice

of strategy for next period.

4) Precisely to emphasize this "no creation" property, Axelrod refers to 'he dynamics as

"ecological" rather than "evolutionary" However, usage here is consistent with that in

(biological) evolutionary game theory.

5) The simulation I will be discussing appears on pp. 48-53. That material is in turn taken

from Axelrod (1980), where the results of his set- '- tournament were originally presented.

The book also contains a "territorial" rir'-lation which wiil not be examined here.

6) More accurately, Axelrod computed the payoff matrix A, used in both the tournament and

the simulation, as the average of five finite games. As will be noted again in footnote 7, this

complication is not of the essence.

7) The fact that A is actually an average of five games (see footnote 6) is not consequential

from the point of view of equilibrium behavior. If all possible strateges are present then by

the usual argument only defection obtains in Nash equilibrium, and defect always is the unique

dominance solution.
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8) Included in this set are all of the game's pure strategy Nash equilibria. CIT forms a

symmetric pure strategy equilibrium with itself but so do 13 other (nice) strategies.

9) Extending Axelrod's simulation to 10,000 rounds brings the path to within 10-7 of a slightly

different Nash equilibrium. This limit also has all 39 nice strategies in its support and

continues to give weight of between one and two tenths to =FF and 5 other strategies.

Axelrod's conjecture (p.55) that the fraction of the population playing CTT would converge to

1 is probably in error. Note, incidentally, that I have not claimed that the path in this

simulation actually converges. While convergence seems highly likely, the size and

complexity of the game makes analysis difficult. In the simulations of the next section, the

games are simple enough that convergence can be formally demonstrated in every case.

10) In particular, DD was not in the strategy set. Conceivably, Axelrod's game may admit

Nash equilibria in which defection is observed in some, but not all, stages (these would be

mixed strategy equilibria; see footnote 8). However, I have yet to find any.

11) Blad considers the continuous version of the dynamics used here. Hirshleifer and

Martinez Coll consider a number of dynamics, including a discrete system similar to the

replicator dynamics but not quite identical to it.

12) When the number of stages is increased, the number of strategies must be increased as

well to preserve dominance solvability to DD. See the discussion at the beginning of the

section.

13) In the language of evolutionary game theory, P7 
= 1 is the unique evolutionarily stable

strategy (ESS; Maynard Smith and Price 1973; see also Maynard Smith 1982 and Hofbauer

and Sigmund 1988).
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14) In fact, G is a diffeomnorphism. See Losert and Akin (1983).
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